
CSCI5550 Advanced File and Storage Systems

Programming Assignment 01:

In-Memory File System (IMFS)

using FUSE

Outline

• FUSE Introduction

– Motivation of using FUSE

– What is inside FUSE

– In-kernel v.s. FUSE

• Programming with FUSE

– Installing FUSE

– FUSE operations

– An example project: LSYSFS

• Programming Assignment 1

– On-Disk Organization

– Basic Commands for Grading

– Bonus

CSCI5550 Proj01: IMFS using FUSE 2

Motivation of using FUSE

• File System in Kernel-space

– Very difficult to build

– Need careful use of synchronization primitives

– Only C language supported

– Standard C libraries not available

– Need root privilege

• File System in User-space (using FUSE!)

– Framework to implement user-space file system

– Easy to write: Avoid awful coding in kernel

– Easy to test: Run like a normal user program

– Easy to integrate libraries: Can easily deploy libraries

– Trade performance for flexibility

CSCI5550 Proj01: IMFS using FUSE 3

What is inside FUSE?

CSCI5550 Proj01: IMFS using FUSE 4

Source: https://en.wikipedia.org/wiki/Filesystem_in_Userspace

• Kernel module

– fuse.ko

– file system (fusefs)

– virtual device (/dev/fuse)

• User-space library

– libfuse.so

– Framework to export

FUSE API

• A flow-chart diagram

showing a request

from user-space to

list files.

In-kernel v.s. FUSE

CSCI5550 Proj01: IMFS using FUSE 5

Source: http://clamfs.sourceforge.net/

In-kernel FUSE

http://clamfs.sourceforge.net/

Outline

• FUSE Introduction

– Motivation of using FUSE

– What is inside FUSE

– In-kernel v.s. FUSE

• Programming with FUSE

– Installing FUSE

– FUSE operations

– An example project: LSYSFS

• Programming Assignment 1

– On-Disk Organization

– Basic Commands for Grading

– Bonus

CSCI5550 Proj01: IMFS using FUSE 6

Installing FUSE

• A Linux environment is required before installing

FUSE. I use the VirtualBox to install Ubuntu 16.04

(64-bit).

• Install FUSE and all the dependencies:

• To check the FUSE version:

• Please note that FUSE version that I have is 2.9.4.

However, it should be fine if your FUSE version is 2.9.x.

CSCI5550 Proj01: IMFS using FUSE 7

$ sudo apt-get update
$ sudo apt-get install gcc fuse libfuse-dev make cmake

$ fusermount -V
fusermount version: 2.9.4

FUSE operations (1/2)

• FUSE uses the callback mechanism to bind the user-

defined functions with file operations.

• Callbacks are a set of functions you write to implement
file operations, and struct fuse_operations containing

pointers to them.

• Example:

CSCI5550 Proj01: IMFS using FUSE 8

file operations user-defined functions

FUSE operations (2/2)

• Using fuse_main to pass the function pointers to FUSE

module:

• Please use the below link to check all the FUSE

operations:

– https://libfuse.github.io/doxygen/structfuse__operations.html

• Next, an example project (LSYSFS) will be used to

show how to implement some basic callback functions.

– https://github.com/MaaSTaaR/LSYSFS

CSCI5550 Proj01: IMFS using FUSE 9

https://libfuse.github.io/doxygen/structfuse__operations.html
https://github.com/MaaSTaaR/LSYSFS

LSYSFS (1/6)

• LSYSFS is an example of using FUSE to build a simple

in-memory filesystem that supports creating new files and

directories under root directory, but it doesn’t support

deleting files and directories.

• Below is the data structure that LSYSFS uses:

CSCI5550 Proj01: IMFS using FUSE 10

The first index is for directory index

The second index for directory name

The first index is for file index

The second index for file name

The first index is for file index (same as above)

The second index for file content

LSYSFS (2/6)

• gettar

– gettar is the most important function among all. It is in charge of

reading the metadata of a given path, and it is always called

before any operation made.

CSCI5550 Proj01: IMFS using FUSE 11

LSYSFS (3/6)

• readdir

– readdir will be invoked when ls is given. That is, readdir will

return all the names under the current directory.

CSCI5550 Proj01: IMFS using FUSE 12

LSYSFS (4/6)

• mkdir & mknod

– mkdir will be used when there is a creation of a directory, and

mknod will be used when a new file is created.

CSCI5550 Proj01: IMFS using FUSE 13

LSYSFS (5/6)

• write & read

– write is for writing new content to a file, and read is for reading

the file content.

CSCI5550 Proj01: IMFS using FUSE 14

LSYSFS (6/6)

• To compile LSYSFS, modify the fifth line of Makefile

and the type “make”:

• To run LSYSFS:

– Open one terminal to start LSYSFS:

– Open another terminal and go to the mount point to test it!

• LSYSFS should work well with following commands:

– cd, ls, mkdir, echo “string” >> file, touch, and cat

CSCI5550 Proj01: IMFS using FUSE 15

$(COMPILER) $(FILESYSTEM_FILES) -o lsysfs `pkg-config fuse --cflags --libs`

$(COMPILER) -D_GNU_SOURCE $(FILESYSTEM_FILES) -o lsysfs `pkg-config fuse --cflags --libs`

$./lsysfs –f MOUNT_POINT

Outline

• FUSE Introduction

– Motivation of using FUSE

– What is inside FUSE

– In-kernel v.s. FUSE

• Programming with FUSE

– Installing FUSE

– FUSE operations

– An example project: LSYSFS

• Programming Assignment 1

– On-Disk Organization

– Basic Commands for Grading

– Bonus

CSCI5550 Proj01: IMFS using FUSE 16

Programming Assignment 1

• In this programming assignment, you are required to

build a simple in-memory filesystem, called IMFS,

using FUSE.

• Requirements:

– Follow the On-Disk Organization: Superblock, Metadata,

and Data region;

– Keep all the data structures (including metadata and data)

in the memory;

– Work well with basic shell commands.

CSCI5550 Proj01: IMFS using FUSE 17

Overall Organization

• On-Disk Organization: A series of blocks, each of size

4 KB, is addressed from 0 to N −1.

– Metadata Region

• Superblock (S): containing special information about IMFS

• Inode Bitmap (i): indicating the availability of Inodes (I)

• Data Bitmap (d): indicating the availability of Data Blocks (D)

• Inodes (I): accommodating inodes

– Data Region

• Data Blocks (D): persisting user data

CSCI5550 Proj01: IMFS using FUSE 18

Metadata Region (1/3)

• Superblock (S)

CSCI5550 Proj01: IMFS using FUSE 19

All the units of size will be counted in bytes

Metadata Region (2/3)

• Inode Bitmap (i) / Data Bitmap (d)

CSCI5550 Proj01: IMFS using FUSE 20

inode_bitmap: indicating the availability of inodes.

data_bitmap: indicating the availability of data blocks.

Metadata Region (3/3)

• Inodes (I)

CSCI5550 Proj01: IMFS using FUSE 21

Metadata Region (3/3)

• Below is an example showing how indirect pointers

work.

CSCI5550 Proj01: IMFS using FUSE 22

Each IMFS inode

M disk pointers:

• 0~M-3 are for direct pointers;

• M-2 is for indirect pointer;

• M-1 is for double indirect pointer;

𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒/4

𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒/4

𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒/4

𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒/4

Data Region (1/3)

• Directory and file organization share the same data

region

CSCI5550 Proj01: IMFS using FUSE 23

Data Region (2/3)

• Directory Organization

CSCI5550 Proj01: IMFS using FUSE 24

c

a

/

b

inum: 0

inum: 3

inum: 5 inum: 7

The data_region of directory a:

inum file_name

0 ..

3 .

5 b

7 c

sizeof(inum) = 4, and sizeof(file_name) = sizeof(SB.size_filename)

As a result, each entry will consume 4 + sizeof(SB.size_filename) bytes

Use the space of data region to store inum and file_name.

The file_name can be regular file name or

directory name

Data Region (3/3)

• File Organization

– Directly store file content into the space of data region.

• Bigger Directories or Files: Multi-Level Index

– Indirect Pointer

– Double Indirect Pointer

CSCI5550 Proj01: IMFS using FUSE 25

Parameter Setting for Assessment

• size_ibmap = 32

• size_dbmap = 32  512

• size_per_data_region = 64

• size_filename = 12

• root_inum = 0

• num_disk_ptrs_per_inode = 4

– 2 direct pointers;

– 1 indirect pointer;

– 1 double indirect pointer.

• Note: For ease of testing, the values of the parameters of

IMFS are set to be small.

CSCI5550 Proj01: IMFS using FUSE 26

Directory Tree for Assessment

CSCI5550 Proj01: IMFS using FUSE 27

flie0 dir0file0

dir1dir0file0

/

Empty file

Small file Big file Big dir

Basic Requirements (100%)

(5%) cd: changing the current directory

(5%) ls: listing all files & directory under the current directory

(15%) mkdir: creating a directory

(15%) touch: for creating a file

(10%) echo “string” >> file: writing a string to a file

(15%) cat: reading a file

(15%) rmdir: removing a directory

– Note: rmdir will recursively remove everything under that directory.

(10%) rm for deleting a file

(5%) Support of “big directory” (having a large number of files)

(5%) Support of “big file” (containing a very long string)

• Note: No need to handle the boundary condition(s) that

exceed the provided parameter setting.
CSCI5550 Proj01: IMFS using FUSE 28

Bonus (10%): Hard Link & Soft Link

• Support of hard link and soft link in IMFS:

(5%) ln file1 link1.hardlink: Creating a hard link

(5%) ln -s file1 link1.softlink: Creating a soft link

• Note: All the basic commands should be completed

before getting the bonus.
CSCI5550 Proj01: IMFS using FUSE 29

Submission

• Submission Deadline: 9:30am on March 23, 2020

• Please submit two things to CUHK Blackboard:

 The whole package of your project

 Including the source code(s), Makefile, etc.

 Naming the package of your IMFS project after your student ID

 A short report

 Showing how to run your project

 Indicating the commands that are supported in your IMFS

 Providing the screen shots of the results to prove the implemented

commands are functioned well

• Discussion is allowed, but no plagiarism

– Your code(s) will be cross-checked.

CSCI5550 Programming Project: IMFS using FUSE 30

https://blackboard.cuhk.edu.hk/

Reference

• https://libfuse.github.io/doxygen/structfuse__operations.html

• https://github.com/MaaSTaaR/LSYSFS

• http://clamfs.sourceforge.net/

• https://en.wikipedia.org/wiki/Filesystem_in_Userspace

CSCI5550 Proj01: IMFS using FUSE 31

https://libfuse.github.io/doxygen/structfuse__operations.html
https://github.com/MaaSTaaR/LSYSFS
http://clamfs.sourceforge.net/
https://en.wikipedia.org/wiki/Filesystem_in_Userspace

